Arizona Health Sciences

Three-dimensional printing surgical instruments: are we there yet?

TitleThree-dimensional printing surgical instruments: are we there yet?
Publication TypeJournal Article
Year of Publication2014
AuthorsRankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG
JournalJ Surg Res
Volume189
Issue2
Pagination193-7
Date Published2014 Jun 15
ISSN1095-8673
KeywordsComputer-Aided Design, Imaging, Three-Dimensional, Lactic Acid, Materials Testing, Polyesters, Polymers, Sterilization, Surgical Instruments
Abstract

BACKGROUND: The applications for rapid prototyping have expanded dramatically over the last 20 y. In recent years, additive manufacturing has been intensely investigated for surgical implants, tissue scaffolds, and organs. There is, however, scant literature to date that has investigated the viability of three-dimensional (3D) printing of surgical instruments.

MATERIALS AND METHODS: Using a fused deposition modeling printer, an Army/Navy surgical retractor was replicated from polylactic acid (PLA) filament. The retractor was sterilized using standard Food and Drug Administration approved glutaraldehyde protocols, tested for bacteria by polymerase chain reaction, and stressed until fracture to determine if the printed instrument could tolerate force beyond the demands of an operating room (OR).

RESULTS: Printing required roughly 90 min. The instrument tolerated 13.6 kg of tangential force before failure, both before and after exposure to the sterilant. Freshly extruded PLA from the printer was sterile and produced no polymerase chain reaction product. Each instrument weighed 16 g and required only $0.46 of PLA.

CONCLUSIONS: Our estimates place the cost per unit of a 3D-printed retractor to be roughly 1/10th the cost of a stainless steel instrument. The PLA Army/Navy retractor is strong enough for the demands of the OR. Freshly extruded PLA in a clean environment, such as an OR, would produce a sterile ready-to-use instrument. Because of the unprecedented accessibility of 3D printing technology world wide and the cost efficiency of these instruments, there are far reaching implications for surgery in some underserved and less developed parts of the world.

DOI10.1016/j.jss.2014.02.020
Alternate JournalJ. Surg. Res.
PubMed ID24721602
PubMed Central IDPMC4460996
Grant ListP30 CA023074 / CA / NCI NIH HHS / United States
P30 ES006694 / ES / NIEHS NIH HHS / United States
Faculty Member Reference: 
George Watts, Ph.D.